A single WW domain is the predominant mediator of the interaction between the human ubiquitin-protein ligase Nedd4 and the human epithelial sodium channel.

نویسندگان

  • J Shaun Lott
  • Sarah J Coddington-Lawson
  • Paul H Teesdale-Spittle
  • Fiona J McDonald
چکیده

The activity of the epithelial Na(+) channel (ENaC) is required for the maintenance of salt and water balance in the body. Channel activity is regulated by the ubiquitin-protein ligase Nedd4 ['neuronal precursor cell-expressed developmentally down-regulated (gene 4)'] that interacts with the channel via its WW domains. Mutations in channel subunits that disrupt this interaction cause Liddle's syndrome, a severe inherited form of hypertension. In previous studies we showed that WW domains 2, 3 and 4 of human Nedd4 bound to the human ENaC (hENaC) subunits, whereas WW domain 1 did not. Here we extend this observation to determine the binding affinities of the human Nedd4 WW domains for hENaC C-terminal peptides. We show that WW domains 2, 3 and 4 bind with differing affinities to Na(+) channel subunit peptides. WW domain 3 has the highest affinity and we predict that WW domain 3 contributes most of the binding because a construct containing the three WW domains bound no better than WW domain 3 alone. Further, a single amino acid change (Arg(165)-->Thr) in WW domain 1 enables binding to the alpha subunit of the channel to occur, with an affinity comparable with that of WW domain 4. Differential binding propensities between the various WW domains and Na(+) channel subunit peptides are explained on the basis of quantitative structural modelling of the complexes and their isolated components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain.

Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY m...

متن کامل

Interaction of Serum- and Glucocorticoid Regulated Kinase 1 (SGK1) with the WW-Domains of Nedd4-2 Is Required for Epithelial Sodium Channel Regulation

BACKGROUND The epithelial sodium channel (ENaC) is an integral component of the pathway for Na(+) absorption in epithelial cells. The ubiquitin ligases Nedd4 and Nedd4-2 bind to ENaC and decrease its activity. Conversely, Serum- and Glucocorticoid regulated Kinase-1 (SGK1), a downstream mediator of aldosterone, increases ENaC activity. This effect is at least partly mediated by direct interacti...

متن کامل

Ubiquitin-protein ligase WWP2 binds to and downregulates the epithelial Na(+) channel.

The epithelial Na(+) channel (ENaC) is a critical component of the pathway maintaining salt and water balance. The channel is regulated by members of the Nedd4 family of ubiquitin-protein ligases, which bind to channel subunits and catalyze channel internalization and degradation. ENaC mutations that abolish this interaction cause Liddle's syndrome, a genetic form of hypertension. Here, we test...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel.

Liddle's syndrome is a form of inherited hypertension linked to mutations in the genes encoding the epithelial Na+ channel (ENaC). These mutations alter or delete PY motifs involved in protein-protein interactions with a ubiquitin-protein ligase, Nedd4. Here we show that Na+ transporting cells, derived from mouse cortical collecting duct, express two Nedd4 proteins with different structural org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 361 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2002